Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Pigment & Resin Technology ; 52(4):490-501, 2023.
Article in English | ProQuest Central | ID: covidwho-20242763

ABSTRACT

PurposeThis study aims to focus on the preparation and characterization of the silver nanowire (AgNWs), as well as their application as antimicrobial and antivirus activities either with incorporation on the waterborne coating formulation or on their own.Design/methodology/approachPrepared AgNWs are characterized by different analytical instruments, such as ultraviolet-visible spectroscope, scanning electron microscope and X-ray diffraction spectrometer. All the paint formulation's physical and mechanical qualities were tested using American Society for Testing and Materials, a worldwide standard test procedure. The biological activities of the prepared AgNWs and the waterborne coating based on AgNWs were investigated. And, their effects on pathogenic bacteria, antioxidants, antiviral activity and cytotoxicity were also investigated.FindingsThe obtained results of the physical and mechanical characteristics of the paint formulation demonstrated the formulations' greatest performance, as well as giving good scrub resistance and film durability. In the antimicrobial activity, the paint did not have any activity against bacterial pathogen, whereas the AgNWs and AgNWs with paint have similar activity against bacterial pathogen with inhibition zone range from 10 to 14 mm. The development of antioxidant and cytotoxicity activity of the paint incorporated with AgNWs were also observed. The cytopathic effects of herpes simplex virus type 1 (HSV-1) were reduced in all three investigated modes of action when compared to the positive control group (HSV-1-infected cells), suggesting that these compounds have promising antiviral activity against a wide range of viruses, including DNA and RNA viruses.Originality/valueThe new waterborne coating based on nanoparticles has the potential to be promising in the manufacturing and development of paints, allowing them to function to prevent the spread of microbial infection, which is exactly what the world requires at this time.

2.
Colloids Surf A Physicochem Eng Asp ; 667: 131367, 2023 Jun 20.
Article in English | MEDLINE | ID: covidwho-2288845

ABSTRACT

Personal protective textiles have attracted extensive interest since Corona Virus Disease 2019 has broken out. Moreover, developing eco-friendly, multifunctional waterproof, and breathable surface is of great importance but still faces enormous challenges. Notably, good hydrophobicity and breathability are necessary for protective textiles, especially protective clothing and face masks for healthcare. Herein, the multifunctional composite coatings with good UV-resistant, anti-oxidative, hydrophobic, breathable, and photothermal performance has been rapidly created to meet protective requirements. First, the gallic acid and chitosan polymer was coated onto the cotton fabric surface. Subsequently, the modified silica sol was anchored on the coated cotton fabric surface. The successful fabrication of composite coatings was verified by RGB values obtained from the smartphone and K/S value. The present work is an advance for realizing textile hydrophobicity by utilizing fluorine-free materials, compared with the surface hydrophobicity fabricated with conventional fluorinated materials. The surface free energy has been reduced from 84.2 to27.6 mJ/m2 so that the modified cotton fabric could repel the ethylene glycol, hydrochloric acid, and sodium hydroxide solutions, respectively. Besides, the composite coatings possesses lower adhesion to deionized water. After 70 cycles of the sandpaper abrasion, the fluorine-free hydrophobic coatings still exhibits good hydrophobicity with WCA of 124.6 ± 0.9°, with overcoming the intrinsic drawback of the poor abrasion resistance of hydrophobic surfaces. Briefly, the present work may provide a universal strategy for rapidly creating advanced protective coatings to meet personal healthcare, and a novel method for detecting RGB values of composite coatings by smartphone.

3.
Journal of Industrial Textiles ; 52, 2022.
Article in English | Scopus | ID: covidwho-2227307

ABSTRACT

During current COVID-19 crises, the antimicrobial textiles primarily those utilized in hospital by doctors and paramedical staff have become increasingly important. Thus, there is an unmet requirement to develop antimicrobial textiles for infection control and hygiene practices. Metallic nanoparticles exhibit great effectiveness towards resistant microbial species making them a potential solution to the increasing antibiotic resistance. Due to this, nanoparticles particularly copper and silver have become most prevalent forms of antibacterial finishing agents for the development of antimicrobial textiles. This review is mainly focused on the significance of copper and silver nanoparticles for the development of antimicrobial textiles. The comparative analysis of the antibacterial effectiveness of copper and silver nanoparticles as well as the possible physical and chemical interactions responsible for their antibacterial action are explained. The negative impact of pathogenic microbes on textiles and possible interactions of antimicrobial agents with microbes have also been highlighted. The significance of nanotechnology for the development of antimicrobial textiles and their applications in medical textiles domain have also been discussed. Various green synthesis and chemical methods used for the synthesis of Ag and Cu nanoparticles and their application on textile substrates to impart antimicrobial functionality have also been discussed. The various qualitative and quantitative standard testing protocols utilised for the antimicrobial characterization of textiles have also discussed in this review. The developed Cu and Ag coated textiles could be effectively applied in the field of hospital textiles for the preparation of antibacterial scrub suits, surgical gowns, panel covers, protective clothing, bedding textiles, coveralls, wound dressings, table covers, curtains, and chair covers etc. © The Author(s) 2022.

4.
BioResources ; 17(4):5655-5666, 2022.
Article in English | ProQuest Central | ID: covidwho-2025778

ABSTRACT

Several protective coatings enhanced by antimicrobial agents and/or pigments were considered for the wooden toy market: water-based matte varnish, an ultra-hygiene water-based matte varnish (WBV-UH), a polyurethane matte varnish (PUV), and an ultra-hygiene antiviral polyurethane matte varnish (PUV-UH), as well as a water-based dye (WBV 5%K), an ultra-hygiene water-based dye (WBV-UH 5%K), a polyurethane dye (PUV 5%K), and an ultra-hygiene polyurethane dye (PUV-UH 5%K), which contain 5% red nano-pigment (K). By utilizing 7 kinds of bacteria and 2 types of yeast that are commonly detected in routine, daily settings, the efficacy of the different protective coatings on wooden toy surface was investigated. The antibacterial and antimicrobial activities of the tested dye samples were based on the agar-well diffusion method. Ultimately, the study found that the addition of antimicrobial agents to several different protective coatings and dyes resulted in the presence of antimicrobial activity vs. the lack thereof with protective coatings and dyes alone. Additionally, some of the dyes with added antimicrobial agents were found to be effective against biofilm formation. Overall, the addition of pigment into the coating, alongside the addition of antimicrobial agents, proved to be highly effective in inhibiting growth and spread of microorganisms on wooden toy surface.

5.
Coatings ; 12(8):1092, 2022.
Article in English | ProQuest Central | ID: covidwho-2023230

ABSTRACT

Unlike the term sound insulation, which means reducing the penetration of noise into other areas, sound absorption means reducing the reflection and energy of the sound on the surface. It has become a highly noticed issue in recent years because the noise in our daily life is increasing day by day, and it causes some health and comfort disorders. In many areas, textiles have been used for acoustics control and noise absorption purposes. The purpose of this work is to determine the most effective media for sound absorption performance and its relation to thermal conductivity from needle-punched nonwoven, meltblown nonwoven and hybrid forms in different arrangements of these fabrics. To provide comparable samples, both needle-punched nonwoven and meltblown nonwoven samples were produced from 100% Polypropylene fibres. According to sound absorption tests, the hybrid-structured sample having a composition similar to the needle-punched nonwoven sample placed at the bottom of our study, while the meltblown nonwoven sample placed as a face layer outperformed the rest of the samples in terms of sound absorption and thermal conductivity. ‘Meltblown only’ samples had remarkably higher sound absorption efficiency than most of the samples, while the ‘needle-punched nonwoven only’ sample had the lowest sound absorption efficiency in all frequencies.

6.
Atmospheric Chemistry and Physics ; 22(13):8439-8456, 2022.
Article in English | ProQuest Central | ID: covidwho-1924522

ABSTRACT

Black carbon (BC) is recognized as the most important warming agent among atmospheric aerosol particles. The absorption efficiency of pure BC is rather well-known, nevertheless the mixing of BC with other aerosol particles can enhance the BC light absorption efficiency, thus directly affecting Earth's radiative balance. The effects on climate of the BC absorption enhancement due to the mixing with these aerosols are not yet well constrained because these effects depend on the availability of material for mixing with BC, thus creating regional variations.Here we present the mass absorption cross-section (MAC) and absorption enhancement of BC particles (Eabs), at different wavelengths (from 370 to 880 nm for online measurements and at 637 nm for offline measurements) measured at two sites in the western Mediterranean, namely Barcelona (BCN;urban background) and Montseny (MSY;regional background). The Eabs values ranged between 1.24 and 1.51 at the urban station, depending on the season and wavelength used as well as on the pure BC MAC used as a reference. The largest contribution to Eabs was due to the internal mixing of BC particles with other aerosol compounds, on average between a 91 % and a 100 % at 370 and 880 nm, respectively. Additionally, 14.5 % and 4.6 % of the total enhancement at the short ultraviolet (UV) wavelength (370 nm) was due to externally mixed brown carbon (BrC) particles during the cold and the warm period, respectively. On average, at the MSY station, a higher Eabs value was observed (1.83 at 637 nm) compared to BCN (1.37 at 637 nm), which was associated with the higher fraction of organic aerosols (OA) available for BC coating at the regional station, as denoted by the higher organic carbon to elemental carbon (OC:EC) ratio observed at MSY compared to BCN. At both BCN and MSY, Eabs showed an exponential increase with the amount of non-refractory (NR) material available for coating (RNR-PM). The Eabs at 637 nm at the MSY regional station reached values up to 3 during episodes with high RNR-PM, whereas in BCN, Eabs kept values lower than 2 due to the lower relative amount of coating materials measured at BCN compared to MSY. The main sources of OA influencing Eabs throughout the year were hydrocarbon OA (HOA) and cooking-related OA (COA), i.e. primary OA (POA) from traffic and cooking emissions, respectively, at both 370 and 880 nm. At the short UV wavelength (370 nm), a strong contribution to Eabs from biomass burning OA (BBOA) and less oxidized oxygenated OA (LO-OOA) sources was observed in the colder period. Moreover, we found an increase of Eabs with the ageing state of the particles, especially during the colder period. This increase of Eabs with particle ageing was associated with a larger relative amount of secondary OA (SOA) compared to POA. The availability of a long dataset at both stations from offline measurements enabled a decade-long trend analysis of Eabs at 637 nm, that showed statistically significant (s.s.) positive trends of Eabs during the warmer months at the MSY station. This s.s. positive trend in MSY mirrored the observed increase of the OC:EC ratio over time. Moreover, in BCN during the COVID-19 lockdown period in spring 2020 we observed a sharp increase of Eabs due to the observed sharp increase of the OC:EC ratio. Our results show similar values of Eabs to those found in the literature for similar background stations.

7.
Water ; 14(9):1391, 2022.
Article in English | ProQuest Central | ID: covidwho-1842865

ABSTRACT

To improve business performance and achieve sustainable development through the concept of hot spring resource reuse, this study investigated the antibacterial effect of alginate-coated tea tree essential oil microcapsules and the effect of alginate microcapsules on the release of tea tree essential oil. The results revealed that 450 μm alginate/tea tree essential oil microcapsules (containing 720 ppm of tea tree essential oil) prepared using microfluidic assemblies effectively inhibited total bacteria, Escherichia coli, and Staphylococcus aureus in hot spring water. For alginate/tea tree essential oil microcapsules prepared under different conditions, at a fixed concentration of cross-linking reagents, the release time increased with the cross-linking time (10 min > 5 min > 1 min). At a fixed cross-linking time, the release time increased with the concentrations of cross-linking reagents (1 M > 0.5 M > 0.1 M). When the concentrations of cross-linking reagents and the cross-linking time were the same, the release time of cross-linking reagents increased with the strength of metal activity (Ca > Zn).

8.
Coatings ; 12(4):486, 2022.
Article in English | ProQuest Central | ID: covidwho-1809748

ABSTRACT

In this work, colloidal silver has been added into an acrylic clear cataphoretic bath, evaluating the effect of two different filler amounts on the durability of the composite coatings. The three series of samples were characterized by electron microscopy to assess the possible change in morphology introduced by the silver-based additive. The protective properties of the coatings were evaluated by a salt spray chamber exposure and electrochemical impedance spectroscopy measurements, evidencing the negative effect provided by high amount of silver, which introduced discontinuities in the acrylic matrix. Finally, the durability of composite coatings was studied by exposing them to UV-B radiation, observing a strong phenomenon of silver degradation. Although the coating containing high concentrations of silver demonstrated poor durability, this study revealed that small amounts of silver can be used to provide particular aesthetic features, but also to improve the protective performance of cataphoretic coatings.

9.
13th International Conference on Nanomaterials - Research and Application, NANOCON 2021 ; : 351-358, 2021.
Article in English | Scopus | ID: covidwho-1786621

ABSTRACT

Packaging plays important part of the visual communication and in consumer’s choice of purchasing goods. To enhance visual appearance, packaging material is often coated. Beside enhancement of visual appearance, additional coating often improves other packaging properties. The COVID-19 pandemic stressed the importance of the antimicrobial properties of goods that encounter consumers. During purchasing, consumer first meets the packaging making it significant in the consumer’s protection. The aim of this research is to determine antimicrobial properties of nanocomposite coating which includes nanosized TiO2. For the purpose of the research a set of offset cardboard prints was coated with nanocomposite coating composed of water-based varnish (WD) and nanoscale TiO2 particles. The prepared samples were characterized by determining CIE L*a*b* coordinates of primary colours (CMYK), detecting colour fading after the accelerated ageing process by density measurements and by determining inhibition of microorganisms’ growth by using smear test. The change in chroma affected by UV radiation (accelerated ageing) is most visible on yellow samples while both, cyan and magenta proved to be more resistant to UV radiation. UV radiation did not cause significant change on the L* coordinate of black, although its values were affected with initial varnishing as TiO2 is also used as a white pigment. Although increase of the TiO2 concentration in nanocomposite causes increase of the colour change, only the one with the highest concentration (2%) proved to be unacceptable. On the other hand, as the beneficial effects of nanocomposites increase with increase of the TiO2 concentration, the nanocomposite with 1% of TiO2 should be the choice. © 2021 NANOCON Conference Proceedings - International Conference on Nanomaterials. All rights reserved.

10.
Coatings ; 12(3):302, 2022.
Article in English | ProQuest Central | ID: covidwho-1760420

ABSTRACT

The flexible and wearable capacitive sensors have captured tremendous interest due to their enormous potential for healthcare monitoring, soft robotics, and human−computer interface. However, despite recent progress, there are still pressing challenges to develop a fully integrated textile sensor array with good comfort, high sensitivity, multisensing capabilities, and ultra-light detection. Here, we demonstrate a pressure and non-contact bimodal fabric-only capacitive sensor with highly sensitive and ultralight detection. The graphene nanoplatelets-decorated multidimensional honeycomb fabric and nickel-plated woven fabric serve as the dielectric layer and electrode, respectively. Our textile-only capacitive bimodal sensor exhibits an excellent pressure-sensing sensitivity of 0.38 kPa−1, an ultralow detection limit (1.23 Pa), and cycling stability. Moreover, the sensor exhibits superior non-contact detection performance with a detection distance of 15 cm and a maximum relative capacitance change of 10%. The sensor can successfully detect human motion, such as finger bending, saliva swallowing, etc. Furthermore, a 4 × 4 (16 units) textile-only capacitive bimodal sensor array was prepared and has excellent spatial resolution and response performance, showing great potential for the wearable applications.

11.
Coatings ; 12(2):277, 2022.
Article in English | ProQuest Central | ID: covidwho-1715153

ABSTRACT

Pollution is currently a public health problem associated with different cardiovascular and respiratory diseases. These are commonly originated as a result of the pollutant transport to the alveolar cavity after their inhalation. Once pollutants enter the alveolar cavity, they are deposited on the lung surfactant (LS) film, altering their mechanical performance which increases the respiratory work and can induce a premature alveolar collapse. Furthermore, the interactions of pollutants with LS can induce the formation of an LS corona decorating the pollutant surface, favoring their penetration into the bloodstream and distribution along different organs. Therefore, it is necessary to understand the most fundamental aspects of the interaction of particulate pollutants with LS to mitigate their effects, and design therapeutic strategies. However, the use of animal models is often invasive, and requires a careful examination of different bioethics aspects. This makes it necessary to design in vitro models mimicking some physico-chemical aspects with relevance for LS performance, which can be done by exploiting the tools provided by the science and technology of interfaces to shed light on the most fundamental physico-chemical bases governing the interaction between LS and particulate matter. This review provides an updated perspective of the use of fluid films of LS models for shedding light on the potential impact of particulate matter in the performance of LS film. It should be noted that even though the used model systems cannot account for some physiological aspects, it is expected that the information contained in this review can contribute on the understanding of the potential toxicological effects of air pollution.

12.
Coatings ; 12(2):198, 2022.
Article in English | ProQuest Central | ID: covidwho-1715152

ABSTRACT

A simple photolysis route was proposed to prepare Amphiphilic Janus Particles (AJP) based on SiO2 microspheres. The surface of SiO2 microspheres were modified by photoactive alkoxysilane, which was synthesized by dealcoholization condensation of 6-nitroveratroyloxycarbonyl and isocyanatopropyl-triethoxysilane. UV irradiation caused eater-breaking allowed for the precise control of hydrophilic modification of the hemispherical exposed particles surfaces. The component and morphology of the obtained particles were characterized by fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy, and the Janus feature was evaluated by scanning electron microscopy, transmission electron microscopy, and dispersity in the oil–water dual-phases. The following results were obtained. The AJP with 450 nm size processes the hydrophilic amino groups on one side and the hydrophobic 6-nitroveratryloxycarbonyl moieties on the other. Additionally, the AJP were located at the phase boundary between water and n-hexane, and the negative charged gold nanoparticles with 25 nm size were adsorbed only onto the side with the positive charged amino groups. The AJP have interfacial adsorption energies that can be as much as three times larger than that of homogeneous particles and thus exhibit excellent surface activities.

SELECTION OF CITATIONS
SEARCH DETAIL